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Geometric orbits of surface waves from a circular hydraulic jump
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We have measured the power spectra of surface waves generated by an unstable circular hydraulic jump. If
the waves are scattered, the spectra show interference patterns which, using semiclassical approximations, have
a simple interpretation as interfering geometric orbits. We also measure the jump radius as a function of
various parameters, and find reasonable agreement with tH&11§63-651X97)14806-1

PACS numbes): 47.35+i, 03.65.Sq

I. INTRODUCTION A large tank @), containing~150 | of deionized water,
rested~3 m above the experiment, and served as the main
A circular hydraulic jump occurs when a vertical jet of water reservoir. A valveR) controlled the flow rate into the
liquid is directed onto a horizontal surface. The liquid bottom of a 2-m-tall, 12-cm-diameter, transparent graduated
spreads out in a thin layer, and then, at a certain radius, itsylinder (C). A variable height runoff spoutlY) set the
height increases abruptly. This phenomenon has been invesiaximum water level in the cylinder, which was typically
tigated previously both theoreticalljl—8] and experimen- 150-180 cm. By adjusting the valvd) carefully, a con-
tally [2—4,9-12 in a number of different contexts. stant height could be maintained in the cylinder, and hence, a
At low flow rates, the observed fluid motion is essentially constant pressure at its bottom. The runoff from the spout
stationary. This includes the position of the jump, which is(D) was caught by a funneE) (thus avoiding a direct con-
circularly symmetric. At a critical flow rate, the flow be-
comes unstable, and although there is still a hydraulic jump
its position now fluctuates locally, breaking the circular sym-
metry. In particular, these fluctuations produce surface wave To Amplifier
which radiate outwardly from the jump positiofThere are [ vV ]
certainly fluctuations inside the jump as well, but the flow
there is too thin to study them propeplyf the fluctuations /
are not too large, then the generated surface waves are jt u L N
linear capillary-gravity waves. N AT A

We have measured the power spectra of the height fluc
tuations in a flow on a circular plate. When the waves are
free to leave the plate without scattering, we find a broad 1

band spectrum without structure. If scattering occurs from ¢
reflector placed in the flow, then characteristic oscillations
are observed in the power spectrum. For our particular ge D
ometry, an analytic expression can be obtained, but a ge«
metric orbit interpretation is more intuitive. c
The paper is organized as follows. In Sec. Il we describe
the experimental apparatus used to control the flow and t
measure the height fluctuations. Section Ill contains a de
scription of the flow and some experimental results on the gy
circular hydraulic jump which we compare with theory. In
Sec. IV we discuss capillary-gravity waves and their proper-
ties. In Sec. V we show how to compute power spectra. Ir ¢ I
Sec. VI we analyze the measured power spectra using serm
classical approximations. Finally, we summarize in Sec. VII. E#’Vi’ -
[

A}

Il. EXPERIMENT

A. Flow control system

L]

=

A schematic of the flow control system is shown in Fig. 1.

*Present address: Division de Physique’ difque, Institut de
Physique Nuclaire, Universitede Paris Sud, Orsay Cedex 91406,  FIG. 1. The flow control system and the optical measurement
France. system(inse) (see texk
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nectior) and conducted to a 120-l collection tank)( A

pump (G) then forced the water back to the reserva) ( mm.A
completing the cycle. The pump was not run during a mea- 2
surement. Jet

A second flow loop, now driven with a constant pressure, 14
fed the experiment. A control valveH(), positioned close to Q
the cylinder, set the flow rate into a transparent 3-m-I@ng o
reduce entry length problemd 2-mm-diameter flexible hose 00 I3 10 15 70 mm

(1), at the end of which was attached an 8-mm-diameter
stainless steel nozzld). The nozzle was mounted vertically FIG. 2. A visual observation, with approximate scales, of the

in the middle of a four-legged table) which rested on a height profile of the flow in the stationary regim@ote that the

heavy., vibration damped table . The ﬂOW_ from the no;zle vertical and horizontal scales are not the sanda eddy is ob-
was directed onto the center of a 2-cm-thick, 40-cm-diametegerved just beyond the jump.

circular glass plateMl). The nozzle height was adjustable,
and was fixed at 5 cm above the surface of the dlatgsich
was itself ~25 cm above the bottom level of the cylinder
(C)]. The plate rested on a circular trougN)( (shown in
cross section which had three adjustable legsot shown
for leveling. An O ring (P) prevented water from runnin e .
underneat% the plateg.J 'I('hgz Elate was routinely cleaned 8vith I was difficult to determineQ; accurately because of
RBS-35 detergent, otherwise the water would not uniformlySmall disturbancegprobably turbulent burstsproduced by
wet its surface. The edge of the plate was rounded to permf'® flow system. Initially, for example, the control valve

a smooth runoff of the water into the trougfThe thickness (H) (see Fig. 1was a precision valve with a relatively small
of the plate was, in fact, chosen so as to give a sufficientignd geometrically complicated flow chamber. When this
large radius of curvature at the edge. The reason for this wilyalve was replaced with a larger and smoottirit less pre-

be discussed laterA drain (Q) in the trough emptied into a cis@ valve, the disturbance rate decreased dramatically. We
funnel (R) (again avoiding a direct connectipwhich re-  had, in fact, originally intended to study the transition from

were all conducted & =20 cm®/s, where surface waves are
generated but are still of small amplitude. At this flow rate,
the mean jump radius was 4.5 cm, with approximately
+0.3-cm fluctuations.

turned the flow back to the collection tank). stable to unstable flow, but it became apparent that this
would require a much quieter flow system which did not
B. Optical system sacrifice precision.

. . . i < i
The water height fluctuations were measured by passing Even for stationary flowQ=Qc), the profile of the water

liaht b th h the fi d ing the it rface is rather complicated. Figure 2 shows a visual obser-
iﬂensi?;?rtll'hergggcal seyst(()avr\TI1 Eiisnshrg\;evﬁsi%n&% inzetr?cr)]SFringl i ation, with approximate scales, of the radial height profile
An infrared laser diode), with a wavelength of 1550 nm, of the flow. (In the stationary regime, the flow always has

) . I .* _circular symmetry. The hydraulic jump is by far the most
was connected to a fiber opt_lc cable terminating in an aOIJUStf)rominent feature, but there are other structures as well.
able lens T). The lens collimated the beam to a spot of '

) Most notably, before the jump, there is an undulating struc-
diameterds<1 mm. The lens was mounted on the lower y jump g

level of ered hich Id slide al K ture which increases in amplitude with radius, but ceases
evel of a two-tiered carlf) which could sli e along a trac abruptly well before the jump. As the flow rate is increased,
(V) mounted underneath the tabl€)( The light beam was

o the amplitude of these undulations decreases, as does their
normally incident on the lower surface of the glass plate

o 7 wavelength, and their number increas@he amplitude in-
(The plate attenuated the beamb0% with a variation of o oaqe5 considerably if a little soap is added to the water,

+49% depending on the measuring positioihe beam was \hich has the effect of lowering the surface tension. This is,
then attenuated by the water flowing on the plate, producing, et how these structures first came to our attentibar-

a transmitted intensity which varied linearly with the water . armore. within the flow. there is an eddy, which has been
hgight. '_I'he transmitted beam was detected with a photodiodgysareq previously2,11]. This is easily demonstrated by
with a fixed lens to collect refracted ray®j, mounted on  qypping dye into the flow before the jump, which then be-
the upper tier of the car. The signal from the photodiode wagymes trapped just beyond the jump. The height after the
amplified and then processed with a HeWIett—Packarqump is almost constant, 1—2 mm, depending on the flow
HP3562A Signal Analyzer to produce a power SpectruMyaie and only decreases, and rather abruptly, near the edge of

The requirements to obtain a linear response and other réfpe piate. Conservation of volurriehe fluid is incompress-
evant optical concerns are discussed in detail in Appendix A . — —.
ible) requires thatQ=2=nrhu where u is the mean flow

velocity. Thus, if the height is constani,~ 1/r. This is pre-
dicted theoretically as a possible solution for an inviscid fluid
With the flow system described earlier, the volume flowasr— o [8], and also by more sophisticated solutions which
rateQ was adjustable from 0 to 60 cifs. The critical flow include viscosity{1-3,8.
rate discussed in the introduction, above which the flow be- The jump radius; was measured as a function of the flow
comes unstable, was found to g~15 cm®/s. At higher rate by projecting a blown-up image of the flow onto a
flow ratesQ>40 cm’/s, the flow becomes quite agitated screen and simply using a ruler. The results are shown in Fig.
although a jump is still discernible. The surface wave studie8 for water, and also for two oils with relative viscosities

Ill. CIRCULAR HYDRAULIC JUMP
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FIG. 4. Radius of the jump position vs flow rate for two differ-

FIG. 3. Radius of the jump position as a function of the flow )
ent nozzle diameters.

rate for three liquids with different relative viscosities

V= Vyarer. The solid lines are power-law fitsee text x=12 cm, and both with and without a reflector>at=16

_ _ _ cm. When the reflector is inserted, an interference pattern
(v=vlvyae) v1=15 andv,=95, respectively(For these appears. However, it should be noted that this interference is
measurements a different plate with diameter 33 cm angveak, and requires sufficient averaging to be observed. The
thickness 4 mm was used. Also, since it was impractical talata shown in Fig. 5 consist of 250 averagéhe power
fill the entire system with oil, only the cylindéC) in Fig. 1 spectrum wherQ<Q., i.e., in the stationary regime where
was filled and then allowed to slowly drain. The flow rate there are no surface waves, is a factet0~2 smaller than
was then computed from the volume rate of chanhBer the  the spectra in Fig. 5.
water data, it should be noted that, wh@r-Q,., the jump This interference phenomenon was, in fact, first observed
radius is actually fluctuating, so what is shown is the ob-using the 4-mm-thick glass plate and no reflector. Although
served mean radius. The oil data were essentially stationamie edge of the plate was rounded, the small radius of curva-
at all flow rates. The water data are consistent with previousure (comparable to a capillary lengtitaused some partial
measurement,9,11,12. The jump profiles are actually not reflection of the surface waves, and hence interference was
sharp but have a width of several millimeters correspondinginavoidable. For this reason we switched to the thicker glass
approximately to a capillary lengttiThe capillary length is  plate described in Sec. IIA with its correspondingly larger
a=\2vlpg, wherey is the surface tensiom, is the density, radius of curvature at the edge. This plate produced no re-
andg is the gravitational acceleration. For water 74 dyn/  flections from its edge, thus allowing a clean measurement of
cm, p=1 glcm®, andg=981 cm/g, soa=3.9 mm) the background spectruithe., with no reflector shown in

At higher flow rates, it appears that;~QP with  Fig. 5.
b=0.77 for water, andb=0.72 for the less viscous oi{The
more viscous oil could not be measured over a wide enoug
range of flow rates to establish an exponent. Moreover, i 10°
was difficult to observe the jump at low flow rates, so the
first few points are not reliableWe also found only a weak
dependence of the jump radius on the nozzle diamkteas
shown in Fig. 4. Replacing the 8-mm nozzle with a 4-mm 10“
nozzle resulted in an increase in the jump radius of only
~10%. These results compare favorably with the predictior
of Bohr, Dimon, and Putkaradze [8] that
ri~Q%8 % ~18 They do not support the dimensional 0
analysis argument of GodwiiT] thatr;~Q¥»~3d2”. we
were not able to determine an exponent for the viscosity in i
meaningful way, but the general trend of the curves in Fig. :
is roughly consistent with Ref8].

S(x,f)

x=12 cm

¥
luﬂf 1 1 peenl

— reflector
---- no reflector
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IV. SURFACE WAVES f (HZ)

Figure 5 shows a power spectrum of the height fluctua-
tions with the geometry shown in Fig. 6. It was measured FIG. 5. Power spectrum wittsolid line) and without(dashed
with a mean jump radius;=4.5 cm, at a measuring position line) a reflector.
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FIG. 7. Dispersion relatiori(\) of undamped capillary-gravity
waves in water. The vertical dotted lines represent the approximate
boundaries for pure capillary wavésmall wavelengthsand grav-
ity waves(long wavelengths The region in the middle has mixed
capillary-gravity waves. The dashed line represents the relatively
sharp boundary between the shallow- and deep-water limits. The
solid lines show the dispersion relation for water with two different
depths.

~

21 Reflector

; . ; ; —p IS computed in Appendix B. It is found that typical damping
0 5 10 15 20 lengths are~5-10 cm(see Fig. 1§ which are comparable
X (cm) to the size of the system and so cannot be ignored.

We must also consider the frequer(cpppley shift of the
ssurface waves caused by the flow. For a wave with radial

FIG. 6. The geometry on the surface of the plate. The thin line Kk th b d f il b .
emanating from the unstable jump show the two interfering orbits WaVe vectorko, the observed irequency will be approxi-

Also shown is a second reflector, inserted later, parallel to and 8 crinately given byw=wy+ uky Wherew, is the frequency in

away from them(see Sec. VJl The dashed lines show a new pair of the absence of a flow. Thus we would like the phase velocity

interfering orbits. of the surface waves;,= wq/ko, to be much smaller than
the flow velocity. For the data shown in Fig. 5, the mean

In order to fully understand such spectra, we must firsflow velocity at the measuring point i =Q/2mxh=1.8

consider the nature of capillary-gravity waves in greater decm/s, which exceeds 10% of, only for f<25 Hz.
tail. To begin with, in Fig. 7 we show the different dispersion

regimes for undamped capillary-gravity waves in water. Also
shown are the dispersion relations for two different heights. V. POWER SPECTRA
For frequencied <5 Hz, we see that the waves are essen- In Appendix C we compute the power spectrum for a

tially shallow—water gravity waves. Fdr>30 Hz they are driven dissipative linear equation with a spatially uncorre-
essentially deep-water capillary waves. The height, therefor(T.na

is an important factor, although the dispersion relation is no ted source term. We propose that the hydraulic jump can be

" o S odeled by such a source. The result is

very sensitive to variations in it except at rather low frequen-
cies. ForQ=20 cm®/s, the mean heighiwithout the reflec-
tor) decreased frorh=1.5 mm atx=6 cm toh=1.2 mm at
x=12 cm, so it is actually not quite constant. When the
reflector was inserted, the overall height increased to
h=1.6 mm atx=6 cm andh=1.4 mm atx=12 cm. The ~
rms variation from surface fluctuations wa<0.1 mm. whereG(x,X’,w) is the Green’s function for the linear equa-

It will also be observed in Fig. 5 that the amplitude of the ion, St(w) is the spectrum of the source, apgx) is its
interference oscillations decreases with increasing frequencgpatial density. We then argue tt@agx,x’, ) could be con-
This is caused both by dampirfgiscosity and also by the structed from the free-wave Green’s functigp(k|x—x’|)
finite size of the light beam. The smallest observable wavewherek(w)=Kky+i8 is the dispersion relation for damped
length is\ hin~2ds~2 mm, which corresponds to a maxi- capillary-gravity waves derived in Appendix B 2.
mum observable frequendy,,,~250 Hz (see Fig. J. The For simplicity, we will now consider the sourcghe
presence of damping requires that we use a dispersion relftmp) to be a point source a&. Thenp(x)= 6(x—Xo), and
tion which includes the dissipative effects of viscosity. ThisEq. (1) becomes simply

S(X,w)=5f(w)f GO, )[?p(x")d%", 1)



7052 S. H. HANSENet al. 55

S(X,w)=Sf(w)|é(X,X0,w)|2. 2) VI. SHORT-WAVELENGTH LIMIT

The calculation in Sec. V can be generalized to more

If we consider the geometry in Fig. 6, it is evident that we complicated geometries in a straightforward way if we em-
can obtain an analytic solution by placing an image source gtloy semiclassical approximation43]. These apply in the
Xi=2x,—X;. Then the Green’s function is just the sum of short-wavelength limit, and express the Green’s function as a
the Green’s functions for both source and image, and so theum over geometrical orbits as

power spectrum along the axis can be written as
, G X, @)=~ Dy Ay(X, X, w)eSaXX" @) 7
o 9ol K(X;—x)] 3 «

9ol k(x=x))] Here « labels an orbit going fronx’ to x in the geometrical

_ , limit of the wave equationanalogous to the geometrical
where we have inserted a factoe’” (O<b=1) to account |imit of optics, for examplg In general, such an orbit is

S(X,0)=Sy(X,w)|1+bée

for the boundary condition at the reflector, and obtained by using the local dispersion relatiarfx,k) to
generate classical trajectories, or rays, according to Hamil-
So(X, ) = 75S¢(@)|gol k(Xx—x;)]|? (4)  ton's equationsX,k) = (dw/ 3k, — dw/3x). Since in our case

the dispersion relation is only weakly dependent on position,

is the background spectrum measured without a reflectothe orbits are effectively lines, but reflections can occur at
i.e.,b=0. (If all the energy is reflected, them=1.) boundaries to produce nontrivial interference effects. A com-

The phased will depend on the precise details of the plete analysis of this approximation as it applies to calcula-
boundary condition at the reflector. This is not simple for ations of the present type is given in R¢t4]. More general
liquid. There will be a boundary layer of width~ \2»/w  background, concentrating on the case where the wave sys-
which will be unimportant ifSk,<1. This is equivalent to t€m corresponds to the Sclifoger equation in quantum me-
examining the validity of the weak-damping approximationchanics, is given in Refl13]. Each orbit donates to the
at high frequenciegsee Appendix B It is easily checked Green’s function a contribution with the accumulated phase
that sky=0.02 over our measured frequency range, so théa(X.x',®)= [} k-dx. The amplitudeA,(x,x",®) is ob-
wave motion should be essentially an antinode at the refledained from the geometry of the orbit as described in Refs.
tor. At the contact line, however, the situation is more com-{13,14]. The advantage of this formula is that it applies even
plicated, since the liguid can wet the surface of the reflectorwhen the geometry of the system does not allow the simple
Even then, the contact line can become pinned due to surfackecomposition of Sec. V.
roughness. Finally, surface tension will produce a miniscus If we consider for a moment a single-point source, then
at the reflector with dimensions of the order of a capillarythere are only one or two orbits, depending on whether or not
length. We therefore make no attempt to predict the phasthe reflector is in the flow. Then the semiclassical Green’'s
since, for the above reasons, it may not even be reproducibléunction Eq.(7), becomes simply

In Appendix C we discuss as a specific example the tele- , , ,
graph equation for which the two-dimensional result is  G°(X,Xj,@)~A;e™ o %)+ A elkox=X)giZkolx =) = (g)
do(k|x—x'])=(i/4)H{P(k|x—x']). At large distances, or
equivalently, short wavelengths, the asymptotic f¢mhich
for our system parameters would be highly accurate abov
~1 H2) is then

where the imaginary part of the wave vector has been ab-
gorbed in the amplitudes. The normalized form of the power
spectrum, Eq(2), can then be written as

i ) " SY(X,0)=|1+b’el %o |2, 9)
e Y| = i(K[x—x'| - /) ,
Go(klx—x |)_4( wklx—x’|) el - O \where SYx, ) =St(w)|A1|?, b'e’=A,/A;, and L can
now be interpreted as the difference in the orbit lengths. We
note that Eq(9) has the same form as the asymptotic result

If we assume that the true Green’s function for capillary-]c h d ical i I o .
gravity waves behaves similarly, then the normalized speci®’ the pedagogical analytic example, H). However, it

frum Sy (X, @) = S(X, 0)/Se(X, @) (which is therefore inde- should be emphasized that a simple analytic expression such

pendent of the source power spectjuran be written as as Eq.(3) can only be found for our specia_l geome(gpint
source, straight reflectprwhereas the semiclassical method

. . is more generally applicable.
Su(x,0)=|1+ ube%e” Pelkot|2, ©) A cor‘r?plicatio?’ll oFc):Fc)urs in the actual system, however, in
that the source is not a point but is spatially extended, pre-
where u=y(Xx—x;)/(x;—X) andL=2(x,—x). We can re- sumably over the annular region occupied by the jump itself.
write this in the formSy(X,w)=A(w)+B(w)coskL+6), Therefore it is necessary to integrate over the source position
where A(w)=1+pu?b%e 2 and B(w)=2ube - are asin Eq.(1). Once again, this is described in detail in Ref.
slowly varying functions ofw, so that the interference term [14]. Here we simply cite the main effect, which is that the
is explicit. (We also implicitly assume thaf varies suffi- dominant contribution, which comes from source points for
ciently slowly with frequency as to be considered constant.which the phase is stationary with respect to variation of the
Note that for this particular case the argument of the intersource position, corresponds in the case of a single reflector
ference term does not depend on the sogjwap) position.  to an orbit emerging radially from the jump. The power spec-
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the reflector is inserted in the flow, which causes a small
additional amount of absorption of the light beaihis clear
now that the peaks in the interference pattern are not evenly
spaced due to the nonlinear dispersion relation for capillary-
gravity waves.

In order to extract the orbit length differente we must
express the normalized spectrum as a functiokpfThus
we must make the change of variabile-kq using the dis-
persion relation calculated in Appendix B. We can then com-
pute the Fourier transform

(@) x=6 cm

Sy(x.f)

A(X,§)=f Sn(x,ko)e™ ™ o¢dk,. (10

PO S N S

0.5 PR D T ST N R T S |
0.0 20.0 40.0 60.0 80.0 100.0

f (H2)

The modulus ofA (x,£) for the spectra in Figs.(8—-8(c) is
shown in Figs. €8)—9(c). In each case there is a strong peak
—— whose position is just the orbit length differente The
phase at the peak is just The values folL are consistent

(b) x=12 cm with the actual measured values, with some small discrepan-
cies that are probably a consequence of the messy boundary
conditions at the reflector which also determine the phase
(see Sec. Y. The peak widths are a consequence of the finite
frequency range over which the power spectrum was mea-
sured.

Inserting the values found in Fig. 9 into Eg6), or
equivalently Eq.(9) (and takingb=1 and correcting for the
increased light absorption with the reflector in plasee can
check our analysis for self-consistency. We show an example
of this as the dashed line in Fig(d}. (Similar results are

' found for the other spectra, but we do not show them for
50.0 100.0 150.0 2000 reasons of clarity.There is more attenuation at high frequen-

Sy(x.f)

PRI YR SN ST VN (NN T SR S N UN U S

f (Hz) cies in the measured data than in the theory, but this is prob-
S — ably a consequence of the finite beam size, as discussed in
] Sec. IV.
(©) x=14 cm _ If we add a second reflector as shown in Fig. 6, additional

orbits appear, the topology of which is indicated by the
dashed lines in the figure. The result of integrating over the
source position is less simple for these orbits, because there
is no source position for which the phase is stationary. A
contribution will still arise, however, dominated by the limits
of the integration region, but the equivalent expression for
the contribution to the power spectrum is considerably more
complicated and we will not go into it in detail. Figure 10
shows| A (x,&)| for this new configuration. A new peak does
: | ' indeed appear af=12.6 cm, which is consistent with the
e length of orbits of the type shown in the figure. We expect
50.0 100.0 150.0 2000  more complicated orbits of this type to be a general feature
f(HZ) of systems with closed boundary conditions. For a com-
pletely closed system the number of orbits can be dramati-
FIG. 8. Normalized power spectra féa) x=6 cm, (b) x=12  cally larger, although the effects of longer orbits will be sup-

cm, and(c) x=14 cm. The dashed line ifc) shows the self- pressed by the presence of dissipation.
consistency of the analysisee text

Sy(x.f)

. . VIl. SUMMARY
trum then still has the form Eq9). We will return to more

complicated geometries below. First let us examine the cor- We have studied the surface height fluctuations created by
respondence between the prediction E). and the actual an unstable circular hydraulic jump. When the fluctuations
data. are small, they are just ordinary capillary-gravity waves. If a
In Figs. 8a)—8(c), we show the normalized spectra for reflector is placed in the flow, the measured power spectrum
x=6, 12, and 14 cm, respectivelyThey do not approach shows an interference pattern. If we treat the jump as a spa-
unity at high frequency because, as discussed previously itially uncorrelated broadband source, then the interference
Sec. IV, there is a small increase in the water height wheihas a simple interpretation using semiclassical approxima-
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_ FIG. 10. Modulus ofA (x,£) for x=12 cm with a second reflec-
[ ﬂ (b) x=12 em tor in the flow. A new peak is now visible d@t=12.6 cm.
15 R -
_ [ L=80cm wave medium, for example. This may have possible rel-
o [ 6 = 176° evance to fields such as seismology and helioseismology.
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F . APPENDIX A: OPTICAL CONSIDERATIONS
25 F ﬂ (c) x=14 cm _ _
~ b ] One can think of the free surface as having two degrees of
g _ ] freedom at the point where the light beam passes through it:
= 2.0 . L=41cm E a vertical translation, and a tilt. Although we are only inter-
“r - 6 = -137° ] ested in variations in the transmitted light intensity arising
R 0 " from the former(attenuatiomn we must also consider the ef-
< ] fects of the lattefrefraction.
10 H 3
. 1. Attenuation
0.5 -
X ] A measurement of the transmitted intensitythrough
0.0 FL-N/ ., b ; deionized water of different heights is shown in Fig. 11.
"~ 0.0 5.0 10.0 15.0 20.0 The data follow the expected law
¢ (cm) I(h)=14e"", (A1)

FIG. 9. Modulus ofA (x, &) for (8) x=6 cm, (b) x=12 cm, and  Yielding an attenuation lengti=0.67 mm for a light wave-
(c) x=14 cm. length of 1550 nm.

There are several considerations in choosing an appropri-
tions. A similar phenomenon should also appear in otheate wavelength. If the height fluctuates, then from &)
systems with spatially uncorrelated broadband source spegse have
tra. For example, a microwave cavity may show such inter-
ference using its own blackbody radiation as a source. More Sl =—(6hl/)+3(hl/)2+---. (A2)
generally, this experiment has demonstrated a mechanism
whereby, even in situations where the excitations of a wavé\ linear response requires that the dynamic range
system are fundamentally stochastic in origin, it is possibldsh//|<1, but, of course, it should be as large as possible
to extract coherent interference effects. Such coherent effecty choosing the smallest for which this condition is satis-
might be used as a probe to determine the properties of thiged. Physically, we expect thash|<h, but, then again, we
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FIG. 13. The deflection of the incident beam as a function of the

FIG. 11. Transmitted light intensity for different water heights. -
surface tilt angle.

The dashed line is a fit to E¢AL).

do not want to lose too much intensity from attenuation soSnell’s law sim=ngsini, whereng= nyater/ Nair is the index of

h should not exceed several attenuation lengths. Taken tdefraction at the interface, we find

gether, these conditions lead to the conclusion that it is de- .

sirable to have”~h. The attenuation length varies widgly tan = &_ (A3)

pum to 10 m in the infrared, so it is not difficult to find a Ng— COSy

convenient source wavelength. In our experiment the water

height was typically 1-2 mnidepending on the flow rate  Figure 13 shows(i) for np=1.316, the index of refraction

hence our choice of the wavelength above. The signal-toat 1500 nm.(For visible wavelengthsny,=1.33; ng is only

noise ratio was better than 1000:1, so the smallest measwveakly dependent on wavelength in this part of the electro-

able height change is then|sh|,»<103/, or magnetic spectrum.The critical anglei, for total internal

|6h|min=1 um. reflection occurs when r=90° and is therefore
i=sin"}(1/ng)=49°. Then,x(i,)=90°—i.=41°, which is

2. Refraction the point where the curve in Fig. 13 terminates.

Since we must capture the outgoing ray, it is clear from

g. 13 that we must keep the tilt angle as small as possible,

certainly below 40°, wherege begins to increase rapidly. It

: . . . Swas therefore necessary to put a lens in front of the photo-

through an interface t'l.ted at an anglérom th? honz_ontal. diode. The lens had a diameter of 1.5 cm, and was located

We are interested n_ot In the angle O,f ref_ractrorbyt n 'the 1.8 cm from the surface of the glass plate. Assuming that

deflection from the incident beam directiqr=r —i. Using oy the central 1 cm of the lens is active, and that there is at

least 1 mm of water on the plate, the maximum detectable

deflection angle iSyma=tan 1(0.5/1.7)=16°. This corre-

sponds to a maximum allowable tilt angle igf,,~=38°, be-

yond which a refracted beam will miss the active part of the

lens.

This limitation puts a constraint on the maximum ampli-
tude of a surface wave. Suppose there is a surface wave of
the form ¢(x,t) = Asin(kx—wt). Its peak tilt anglé , is then

As the light beam passes through the water-air interface, i,t_-i
will refract if the free surface is tilted due to surface waves.
Figure 12 shows the refraction of a light ray as it passe

tari ,=maxde/ x| = Ak=2mAI\. (A4)

The beam diametety limits the smallest measurable surface
wavelength, i.e.\nin~2ds~2 mm. For this wavelength

Dwarer ." (which represents the worst casee require that,<ipay,
<_1)' or therefore thaA<(?\min/27r)tah max~ 0.3 mm. N
. The measured signal is, of course, a superposition of
/ \ . many surface waves. However, using E41) to calibrate
. the photodiode output, we find that the rms height variation

is ([ 8h(x,1)]1%)Y?>~0.1 mm. Taking this as the amplitude of
FIG. 12. Geometry of the optical measuremésse text a single wave, and using EdA4), this corresponds to
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of calculation, we will work in Cartesian coordinates, and

ML B B ~
10 F ' ' ' ] consider a plane wave propagating in thalirection in a
[ ] gravitational fieldg= — gz. The unperturbed surface is taken
08 L ] to be atz=0. The linearized Navier-Stokes equations are
Tt 1 then
= o6l . Q. [Pvx PP, 1P .
%= i ] gt \axZ T e p ax’ (B13
04 .
[ ] 2 2
[ ny=1316 : Pz (007 Tvg) 1P
o2 ° . at Ntz g @ (B1b)
oo Lt vy ety bl with the continuity condition
0.0 10.0 20,0 30.0 40.0 50.0
. v Jv
i (degrees) X+ Z=o. (B1c)
IX 0z
FIG. 14. Th(_a normalized transmission coefficient as a functionlf we assume a solution of the forms
of the surface tilt angle.
— 7 aBzai(kx—wt)
i,~17° and x(i,)=6°, both well within the limits deter- vx=vxee : (B2a)
mined earlier. In fact, by simply monitoring the photodiode _ -
output, it was observed that the beam never left the active v,=v el e, (B2b)
area of the lens, except at the highest flow rates which pro-
duced extremely largéand certainly nonlinearsurface fluc- p/p:'ﬁeﬁzewkx— ot gz, (B20)
tuations. Furthermore, we see that the linearity condition dis-
cussed in the first part of this appendix, which required thathen substitution into Eq¢B1) requires that
([ h(x,1)1?)Y2</, is then also marginally satisfied.
_Finally, as a surface wave passes, the initial beam inten- _;, ; ,,(k2— g2 0 ik\ [0y
sity |5 in Eq. (A1) will also vary in time since the reflectivity i > -
of the interface will also depend on the tilt angle. Thus Eq. 0 —lotv(k=B%) B v, | =0,
(A1) should be modified to read ik B 0, 5
- B3
I(h,i)=1oT(i)e ", (A5) (®3

- . o o which in turn only has a solution if the determinant of the
where T(i) is the normalized transmission coefficient suchmatrix vanishes. Thus we find the four solutions

thatT(0)=1. For an unpolarized beafthe fiber optic cable B=*k,+k’>—iw/v . Solving for the eigenvectors, we can
does not preserve the polarized light emitted from the lasewrite
diode), and for equal permeabilities in both media, this will

have the formT (i)=T(i)/T(0), where[15] v=[Ae”+Be ¥+ CeM+De ™'V (B4a)

1 sirf(i—r) . tarf(i—r) (A6) v,=(—i)[A?—Be ¥*+ C(k/m)e™
2[sirf(i+r)  tarf(i+r)]’ —D(k/m)eM7]gitkx-ot) (B4b)

T(i)=1-

andT(0)=4ny/(ny+ 1)? is the transmitted intensity at nor- - i (ko)
mal incidence(We ignore multiple reflections from the other Plp=(w/k)[Ae™“+Be *“]e —gz, (B4o

surfaces in the experimehtAs shown in Fig. 14.T(i) is
essentially unity up te-30°. In fact, for smali, it is found
that T(i)=1—ai* where a=(ng—1)%(—n3+4n,—1)/
8=0.032 f‘?g”O: 1-3164 Thgs4fqr4a single modend small 4 irement that the velocity field vanish at the bott¢ired)
tilt angles, i*=(d¢/ dx)*= A%k *sin(kx— wt), so the effect of surface, i.e.,u5(X,—h)=v,(x,—h)=0. This immediately
this term would be to produce negligible harmonic contami-gives us the two relations

nation at 20 and 4w.

wherem=k’—iw/v and A, B, C, andD will be deter-
mined by the boundary conditions.
The first two boundary conditions are found from the re-

Ae K1 B+ Cce ™+ De™=0, (B53)
APPENDIX B: DISPERSION RELATIONS
Ae *"—Be"+C(k/m)e ™"—D(k/m)e™=0.

1. w(k) for damped capillary-gravity waves (B5h)

We would like to calculate the dispersion relation for
small-amplitude capillary-gravity waves on the surface of arniThe remaining two boundary conditions are found by balanc-
incompressible viscous liquid of finite dep{ 16]. For ease ing the forces at the free surface. The perturbed free surface
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is defined by its displacement from equilibriuma(x,t) at the surface. We then expand E@9) for small ¢, and
which is related to the velocity field by keep only the lowest ordergf) terms. Then Eq(B9a) be-
comes simply

de

de
—=0,(X,0) —v(X, @) ——=v,X,¢), (B6)

at ax dvy  du,

Ul,xz|z=0: 7]1(5 + 8_X) =0, (B10)
z=0

where the last approximation can be madeld/dx is a

small quantity. This will be true ifo<<\ where\ is the

wavelength of a surface wave. In this cagéx,t) will have

which leads directly to the third boundary condition

the same dispersion relation as the velocity field. If the sur- K2+ m? K2+ m?
face is curved, the surface tension will produce a capillary A-B+C|——|-D|———|=0. (B11)
force which must then balance the difference in the viscous 2km 2km
stress forces. The viscous stress tensor in Cartesian coordi-
natesx; is The second surface boundary condition E8Pb) is now
ot | 2k B7 O P I B12
TiK= 7 o T ax | (B7) 0 s z=¢_ Y2 (B12
The condition at the surface is then Taking the time derivative of both sides, and using 6B#),
we obtain
N (o= 01ik) =Zn- (B8)
K\O2ik— O1jk)z=¢ R 9P (92UZ - (7202 513
gt “Mazat o YoxZ (B13

where o, x is the viscous stress tensor for the liquid
(a=1) and the air above itd=2), vy is the surface tension,
R is the radius of curvature, amg is the unit vector normal
to the surface. Repetition of indices implies summation.
Again, for small-amplitude wavesn, /n,|=|d¢/x|<1, so

Finally, using Egs.(B4), and settingp=0 in the end, we
arrive at the fourth boundary condition

Eg. (B8) simplifies to 02 ' 02 | Keo? |
All-—5+2ie|+B| 1+ —5+2ie|+C| — —+2i€
w w Mw
(UZ,XZ_Ul,xz)z:qozoi (B9a Koo
wOO
+D| —=+2ie| =0, (B14)
Mw
&Zgo
(0'2,22_ O'l,zz)z: o= ')’W- (B9b)

wheree= vk?/w, v=7,/p, andw? = gk+ (y/p)k®, which is
the familiar dispersion relation for deep-watge., infinite
Since 7,< 771, the coupling between the two fluids will be depth capillary-gravity waves.

weak, and we can consider the air to be stationary. Then The four boundary conditions Eq®5), (B11), and(B14)
02ikl 2= o= — Podik, WherePy is the (constant air pressure  will only have a solution if

e—kh ekh e—mh emh
e kh _gkh Ke—mh _ Eemh
m m
1 4 k2+m? _K+m? | =o0. (B15)

2km 2km

w2 ) > ) kw? ) kw? )

——+2ie 1+—5+2ie -— 5+ 2i€ 5+2i€
0} w M Mo
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The dispersion relation we seek, namelyfk), is implicitin ~ where\ is a small parameter which later will be set to unity.
this determinant. After some suitable combinations of rowsWe now expandy andk as follows:
and columns, it can be conveniently expressed as

w=wotNa;+\%ar+ -,
a(1+6a’+a*)tantkh tant(kh/a) + b(1—a?)?

X [tantkh—a tanhkh/a)]— (1+2a°+5a%)
+4a?(1+a?)sechkh sectikh/a)=0, (B16)

k:k0+ )\B1+ )\2B2+ sy

such thatwy and ky are real. Substituting these into Eq.
(B20), we find the following relations for each order »fup

where a=k/m, b=w2/w?, and where we have used the © O(\?):
identity i e=a%/(1—a?) [17].

We will now make the weak-damping approximation,
namely, thate<1, or equivalently,|a|<1. First, we drop do
exponentially small terms in EqB16), and write it as a AL al:_woal(k0)+ﬁld_k§r (B21b
power series ira:

A% we=wn(ko), (B21a

a%[b tantkh—1]+al[tantkh—b]—2a?[b tantkh+1]

2 d d(l)o
A“ azz_woaz(ko)_Blm[woal(ko)]+,32m
+2a’[3 tantkh+b]+a*[b tantkh—5]

+a’[tantkh—Db]=0 (B17) .+Bid2w° B21
| FTS (8210
Then expressing in terms ofe and expanding in powers of ) ] ]
€, we obtain We will take kqy to be the independent variable, so we can
chooseB; and B3, to be purely imaginary, i.e,81,2=i,8'1’2.
s 2 1 , 1 This leaves us with seven variables and only five equations,
o = o tantkh 1-(ie) = m -~ (i€)| 4+ o so we must add two conditions based on physical consider-
ations.
Y
+0{(ie)® 2}} (B18) a. Temporal damping

If the system is driven spatially and then allowed to decay
in time, then k must be real, which requires that
B1=p,=0. In this case, EqgB21b) and(B21¢ reduce to

We are not finished, however, sineaepends om. Solving
recursively, we arrive at the final result, @(e,),

1
W= Wp 1_(ieh)lIZSinhZ(h_(ieh)(2+m a;=—wedy, (5228)
1 A= — (J)Oaz, (BZZb)
+ —) , (B19) . . . .
sinff2kh the real and imaginary parts of which yield the frequency
shift A, and the temporal damping coefficient respec-
where ep=vk? wp,, and wp=w3tantkh which is the well-  tively, when we seh=1:
known dispersion relation for capillary-gravity waves in the
absence of viscosity. The’? term confirms the result argued A,=ReNa;+\ay),=—woRe(a +a,), (B233
for by Lighthill [18] on physical grounds. It should be ob-
served, however, that this term vanishes in the deep-water a=Im(\ay+\2a;)=—wolm(a; +a,).  (B23b)

(h—<) limit, which is why it is necessary to retain the next

order term also which does not vanish. Specifically, from Eq(B19) we have that

It should also be pointed out that E@19) is really an k) = (i e Y2/ sinh2keh 824
expansion in the variablé ¢,)"Z/sinhznh, that is, the height 81(ko) = (i &) /sinhZoh, (B243
also plays an important role in the dissipation. For extremely ko) = (i 21 1/2cosRk-h+ 1/sinf2k-h
shallow water, the expansion will break down, and the damp- (ko) = (i €o)( COSTKoN T L/SINT <Ko )'(Bz4b)

ing can no longer be considered weak. To consider this limit,

we must return to E¢(B16) and expand it first in powers of whereey=vk3/w,, and so we easily find that
kh. To lowest order, it is found thab= —iwikh3/3v, i.e.,

the waves are overdampsgh particular, it should be noted

that for gravity waveso= —igk?h®/3v, i.e., they are purely Ay=—wo
diffusive with diffusion constanD,=gh®/3v.)

€0 1/2 1
(B253

2/ sinhZgh’

€ 1/2 1 €

= =t | 5| 4t ——

2] sinhxeh |\ 2 cosltkh
Above, we found a dispersion relation of the form > )

2. Damping coefficients a=—wo

. (B25b)

w=wn(K[1-\ag(k)—r2ay(K)] (B20) * SinfP2koh
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A[;:)\al-i- )\Zaz

60.0 [t
E : - Re(a;+ 20 \ 1 ayimo2s
50.0 2 E =—wo| Re(a;t+ay) % ma; mdko
400 | & dko
: ] R L Y P B27
O 300 F ] 2 aid '\ dk, (Imay)“|, (B27a
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wo
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f (H2) dko
(O] da.
FIG. 15. Q as a function of frequency for water. dwg Im a;Re = dk | (B27b)
dko
Note that in the deep-wateh{~) limit, the 3 term van- _ _ _
ishes, as mentioned earlier, and thg term yields Again, using Eqs(B24), we find that
a— —2wg€en= —2vk(2), the well-known result for the weak- 12
damping limit[16]. Ag=—wy (@) ! - 4 60)_:;&}

We show in Fig. 15 th&) factor, defined af)= wy/2«, 2 S|nh2k0h intr2koh|” B28
as a function of frequencl/= Rew/27, for water with depth (B283
h=1.5 mm. Since the weak-damping approximation is accu- g Y2 1 € 1
rate to better than-10% forQ>5, this figure tells us that it B=|— (—) — (4+ cosFKh
is valid abovef~1 Hz and up tof ~100 kHz (not shown. % 2 Smh2k° cositkoh
As discussed at the end of Appendix B 1, @efactor be- dko
comes small at low frequency due to the excess damping (ko)
encountered in the extreme shallow-water limit. L. (B28b)

sintf2koh
b. Spatial damping where
If the system is driven temporally, and only decays spa-
. . . . 1 (O] dwo 2k0h
tially, then w is real which requires that; and «, also be fikg)=—z—|—/ — || 1— ———
real. In this case, EqgB21b) and (B21¢ yield the four 2 dko tanhZ,h
equations wo 2w, dwg) 2 -
e/ e (8283
=—wgReqy, B26
e 5289 foko) = 2+ 20 / Qwoj(y 2K |- o0
2(ko) =5 %/ dk fanhakon (B28d
d
0= —wglma, + ﬁ'ld—wo, (B26b) In the deep-water Iimitﬁ—>2vk§/(dw0/d ko). In Fig. 16 we
Ko show the spatial damping coefficieAtas a function of fre-
quency for water with depth=1.5 mm.
(B1)? d®wq APPENDIX C:
= — woRea,+ B! -— ;
ay= ~ woRea + By rndkO (0o21) = =5 did GREEN's FUNCTIONS AND POWER SPECTRA
(B26¢

0= —wylma,— R dko(w0a1)+,82dk§ (B260)

The solution gives the frequency shift; and the spatial
damping coefficienp:

We would like to find the power spectrum for a general
driven dissipative linear equation

Lo(x,t)=1(x,t) (Cy

whereL is a linear operator anf(x,t) is a source term. We
proceed by defining the Green’s function in the usual way
i.e., LG(x,x',t,;t")=8(x—x")6(t—t"), in terms of which
the solution to Eq(CY) is
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FIG. 16. The spatial damping coefficient as a function of fre-

quency for water.

(p(X,'[)Zf G(x,x',t,t")f(x',t")d’dt’. (C2

If we consider the partial transform ?pf(x,w)
= [ p(x,t)e'“'dt, then we can write EqC2) as

E(X,w)=f G(x,x",0) T (X', w)d’. (C3

The power spectrum is obtained by considering the en-

semble average
(’g‘;(x,w);z*(x',w')):f C(x,x' t,t")el e gt dt’,
(C4

where C(x,x",t,t")=(p(x,t)p(x’,t")) is the correlation
function. If the correlation function is time translationally
invariant, i.e.,C(x,x’,t,t")=C(x,x",t—t"), then

(o(X,0)0* (X' ,0"))=27S(x,X",0)8(w— '), (C5)
where S(x,x’,w)=fC(x,x’,7)e'“’dr is the power spec-

trum.
If we now substitute Eq(C3) into Eq.(C4), we find that

<E<x1,w>5*<x2,w')>=f G(x1. X', 0)G* (%, X", ")
X(T(x',0)T* (X", 0"))d% d",
(Co
which using Eq(C5) can be written as
S(xl,xz,w)=J G(xy, X ,0)G* (Xp,X", @) St(X' X", w)

x d9%’ d9x”,

(C7)

. H. HANSENZet al.
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whereS;q(x,X’,w) is the power spectrum of the source term
f(x,t) defined in the same manner as EG5) [19].

Now let us suppose that the source term is spatially un-
correlated, and that its spectrum is independent of position.
Then we can writeS;(x,X", ) = S;(w) p(X) 5(x—x"), where
p(x) is the spatial density of the sourf20]. Equation(C7)
then becomes

S(Xq, Xy, 0) = Sf(w)f G(xy, X, 0)G* (Xp,X, @) p(x")d¥X".
(C9

Generally, the power spectrum is measured at a single point,
in which casex;=x,=x, and so

S(X,a))ZSf(w)f IG(x,x",w)[?p(x")d%".  (C9)

We will consider now only free-wave solutions whefe
has plane-wave eigenfunctions, i.e.,Le'(@x eV
=D(q,w)e'@* Y where the eigenvalu®(qg,w) is the
dispersion function, an®(qg,w) =0 gives the dispersion re-
lation. This case includes the linearized Navier-Stokes equa-
tions described in Appendix B, where the fieldx,t) repre-
sented the displacement of the free surface from equilibrium.
The Green'’s function is then given by

J

Integral Eq.(C10) would appear to be difficult to compute
for the dispersion relation found in Appendix B, but we shall

eiCI'(Xfx/)
d
D(q,w)

1
(2m)¢

Go(X,x",w)= d

g. (C10

now argue what form it is likely to take. Let us consider, for
pedagogical reasons, the telegraph equation

1% 9 _,
2ty V=), (C1y

This is just the usual driven wave equation to which has been

added a dissipative term with positive coefficientThe dis-

persion function(which is now isotropig is easily found to

be D(q,0)=0°>—k® where k’=w?/c’>+iyw. Thus,

D~ Y(qg,w) will have poles at+k, which will be in opposite

quadrants of the complex plane. The integral K210 can

then be evaluated by contour integration such that only the

pole at+k is enclosed, corresponding to a single source of

spatially decaying outgoing wavé21]. It is found that
Go(x,x, )= (i/2k)e x|

(d=1), (C123

Go(x,x",w)=(IIHHP (kx—x']) (d=2), (c12b

where H{V(z) is a Hankel function of the first kind. We
postulate that the dispersion relation found in Appendix B
will yield a similar pole structure with the consequence that
the general form of EqQYC12) will remain unchanged, i.e.,
Go(x,x",w)=go(k|x—x']), where the functiongy(z) will
depend on the specific form of the dispersion function

D(q,w).
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