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Geometric orbits of surface waves from a circular hydraulic jump

S. H. Hansen, S. Ho”rlück, D. Zauner, P. Dimon, C. Ellegaard, and S. C. Creagh*
The Center for Chaos and Turbulence Studies, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen O” , Denmark

~Received 23 August 1996!

We have measured the power spectra of surface waves generated by an unstable circular hydraulic jump. If
the waves are scattered, the spectra show interference patterns which, using semiclassical approximations, have
a simple interpretation as interfering geometric orbits. We also measure the jump radius as a function of
various parameters, and find reasonable agreement with theory.@S1063-651X~97!14806-1#

PACS number~s!: 47.35.1i, 03.65.Sq
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I. INTRODUCTION

A circular hydraulic jump occurs when a vertical jet
liquid is directed onto a horizontal surface. The liqu
spreads out in a thin layer, and then, at a certain radius
height increases abruptly. This phenomenon has been in
tigated previously both theoretically@1–8# and experimen-
tally @2–4,9–12# in a number of different contexts.

At low flow rates, the observed fluid motion is essentia
stationary. This includes the position of the jump, which
circularly symmetric. At a critical flow rate, the flow be
comes unstable, and although there is still a hydraulic ju
its position now fluctuates locally, breaking the circular sy
metry. In particular, these fluctuations produce surface wa
which radiate outwardly from the jump position.~There are
certainly fluctuations inside the jump as well, but the flo
there is too thin to study them properly.! If the fluctuations
are not too large, then the generated surface waves are
linear capillary-gravity waves.

We have measured the power spectra of the height fl
tuations in a flow on a circular plate. When the waves
free to leave the plate without scattering, we find a bro
band spectrum without structure. If scattering occurs from
reflector placed in the flow, then characteristic oscillatio
are observed in the power spectrum. For our particular
ometry, an analytic expression can be obtained, but a g
metric orbit interpretation is more intuitive.

The paper is organized as follows. In Sec. II we descr
the experimental apparatus used to control the flow an
measure the height fluctuations. Section III contains a
scription of the flow and some experimental results on
circular hydraulic jump which we compare with theory.
Sec. IV we discuss capillary-gravity waves and their prop
ties. In Sec. V we show how to compute power spectra
Sec. VI we analyze the measured power spectra using s
classical approximations. Finally, we summarize in Sec. V

II. EXPERIMENT

A. Flow control system

A schematic of the flow control system is shown in Fig.

*Present address: Division de Physique The´orique, Institut de
Physique Nucle´aire, Universite´ de Paris Sud, Orsay Cedex 9140
France.
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A large tank (A), containing;150 l of deionized water,
rested;3 m above the experiment, and served as the ma
water reservoir. A valve (B) controlled the flow rate into the
bottom of a 2-m-tall, 12-cm-diameter, transparent graduate
cylinder (C). A variable height runoff spout (D) set the
maximum water level in the cylinder, which was typically
150–180 cm. By adjusting the valve (B) carefully, a con-
stant height could be maintained in the cylinder, and hence,
constant pressure at its bottom. The runoff from the spou
(D) was caught by a funnel (E) ~thus avoiding a direct con-

FIG. 1. The flow control system and the optical measuremen
system~inset! ~see text!.
7048 © 1997 The American Physical Society
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55 7049GEOMETRIC ORBITS OF SURFACE WAVES FROM A . . .
nection! and conducted to a 120-l collection tank (F). A
pump (G) then forced the water back to the reservoir (A),
completing the cycle. The pump was not run during a m
surement.

A second flow loop, now driven with a constant pressu
fed the experiment. A control valve (H), positioned close to
the cylinder, set the flow rate into a transparent 3-m-long~to
reduce entry length problems!, 12-mm-diameter flexible hos
(I ), at the end of which was attached an 8-mm-diame
stainless steel nozzle (J). The nozzle was mounted verticall
in the middle of a four-legged table (K) which rested on a
heavy, vibration damped table (L). The flow from the nozzle
was directed onto the center of a 2-cm-thick, 40-cm-diame
circular glass plate (M ). The nozzle height was adjustabl
and was fixed at 5 cm above the surface of the plate@which
was itself;25 cm above the bottom level of the cylind
(C)#. The plate rested on a circular trough (N) ~shown in
cross section!, which had three adjustable legs~not shown!
for leveling. AnO ring (P) prevented water from running
underneath the plate. The plate was routinely cleaned w
RBS-35 detergent, otherwise the water would not uniform
wet its surface. The edge of the plate was rounded to pe
a smooth runoff of the water into the trough.~The thickness
of the plate was, in fact, chosen so as to give a sufficie
large radius of curvature at the edge. The reason for this
be discussed later.! A drain (Q) in the trough emptied into a
funnel (R) ~again avoiding a direct connection! which re-
turned the flow back to the collection tank (F).

B. Optical system

The water height fluctuations were measured by passi
light beam through the flow and measuring the transmit
intensity. The optical system is shown in the inset to Fig.
An infrared laser diode (S), with a wavelength of 1550 nm
was connected to a fiber optic cable terminating in an adj
able lens (T). The lens collimated the beam to a spot
diameterds&1 mm. The lens was mounted on the low
level of a two-tiered car (U) which could slide along a track
(V) mounted underneath the table (K). The light beam was
normally incident on the lower surface of the glass pla
~The plate attenuated the beam;60% with a variation of
64% depending on the measuring position.! The beam was
then attenuated by the water flowing on the plate, produc
a transmitted intensity which varied linearly with the wat
height. The transmitted beam was detected with a photod
with a fixed lens to collect refracted rays (W), mounted on
the upper tier of the car. The signal from the photodiode w
amplified and then processed with a Hewlett-Pack
HP3562A Signal Analyzer to produce a power spectru
The requirements to obtain a linear response and other
evant optical concerns are discussed in detail in Appendix

III. CIRCULAR HYDRAULIC JUMP

With the flow system described earlier, the volume flo
rateQ was adjustable from 0 to 60 cm3/s. The critical flow
rate discussed in the introduction, above which the flow
comes unstable, was found to beQc'15 cm3/s. At higher
flow ratesQ.40 cm3/s, the flow becomes quite agitate
although a jump is still discernible. The surface wave stud
-
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were all conducted atQ520 cm3/s, where surface waves ar
generated but are still of small amplitude. At this flow ra
the mean jump radius was;4.5 cm, with approximately
60.3-cm fluctuations.

It was difficult to determineQc accurately because o
small disturbances~probably turbulent bursts! produced by
the flow system. Initially, for example, the control valv
(H) ~see Fig. 1! was a precision valve with a relatively sma
and geometrically complicated flow chamber. When t
valve was replaced with a larger and smoother~but less pre-
cise! valve, the disturbance rate decreased dramatically.
had, in fact, originally intended to study the transition fro
stable to unstable flow, but it became apparent that
would require a much quieter flow system which did n
sacrifice precision.

Even for stationary flow (Q,Qc), the profile of the water
surface is rather complicated. Figure 2 shows a visual ob
vation, with approximate scales, of the radial height pro
of the flow. ~In the stationary regime, the flow always ha
circular symmetry.! The hydraulic jump is by far the mos
prominent feature, but there are other structures as w
Most notably, before the jump, there is an undulating str
ture which increases in amplitude with radius, but cea
abruptly well before the jump. As the flow rate is increase
the amplitude of these undulations decreases, as does
wavelength, and their number increases.~The amplitude in-
creases considerably if a little soap is added to the wa
which has the effect of lowering the surface tension. This
in fact, how these structures first came to our attention.! Fur-
thermore, within the flow, there is an eddy, which has be
observed previously@2,11#. This is easily demonstrated b
dropping dye into the flow before the jump, which then b
comes trapped just beyond the jump. The height after
jump is almost constant, 1–2 mm, depending on the fl
rate, and only decreases, and rather abruptly, near the ed
the plate. Conservation of volume~the fluid is incompress-
ible! requires thatQ52prh ū where ū is the mean flow
velocity. Thus, if the height is constant,ū;1/r . This is pre-
dicted theoretically as a possible solution for an inviscid flu
asr→` @8#, and also by more sophisticated solutions whi
include viscosity@1–3,8#.

The jump radiusr j was measured as a function of the flo
rate by projecting a blown-up image of the flow onto
screen and simply using a ruler. The results are shown in
3 for water, and also for two oils with relative viscositie

FIG. 2. A visual observation, with approximate scales, of t
height profile of the flow in the stationary regime.~Note that the
vertical and horizontal scales are not the same.! An eddy is ob-
served just beyond the jump.
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7050 55S. H. HANSENet al.
( ñ 5n/nwater) ñ 1515 and ñ 2595, respectively.~For these
measurements a different plate with diameter 33 cm a
thickness 4 mm was used. Also, since it was impractical
fill the entire system with oil, only the cylinder~C! in Fig. 1
was filled and then allowed to slowly drain. The flow ra
was then computed from the volume rate of change.! For the
water data, it should be noted that, whenQ.Qc , the jump
radius is actually fluctuating, so what is shown is the o
served mean radius. The oil data were essentially station
at all flow rates. The water data are consistent with previo
measurements@2,9,11,12#. The jump profiles are actually no
sharp but have a width of several millimeters correspond
approximately to a capillary length.~The capillary length is
a5A2g/rg, whereg is the surface tension,r is the density,
andg is the gravitational acceleration. For water,g574 dyn/
cm, r51 g/cm3, andg5981 cm/s2, soa53.9 mm.!

At higher flow rates, it appears thatr j;Qb with
b.0.77 for water, andb.0.72 for the less viscous oil.~The
more viscous oil could not be measured over a wide enou
range of flow rates to establish an exponent. Moreover
was difficult to observe the jump at low flow rates, so th
first few points are not reliable.! We also found only a weak
dependence of the jump radius on the nozzle diameterdn , as
shown in Fig. 4. Replacing the 8-mm nozzle with a 4-m
nozzle resulted in an increase in the jump radius of on
;10%. These results compare favorably with the predict
of Bohr, Dimon, and Putkaradze @8# that
r j;Q5/8n23/8g21/8. They do not support the dimensiona
analysis argument of Godwin@7# that r j;Q1/3n21/3dn

2/3. We
were not able to determine an exponent for the viscosity i
meaningful way, but the general trend of the curves in Fig
is roughly consistent with Ref.@8#.

IV. SURFACE WAVES

Figure 5 shows a power spectrum of the height fluctu
tions with the geometry shown in Fig. 6. It was measur
with a mean jump radiusxj54.5 cm, at a measuring position

FIG. 3. Radius of the jump position as a function of the flo
rate for three liquids with different relative viscositie

ñ 5n/nwater. The solid lines are power-law fits~see text!.
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x512 cm, and both with and without a reflector atxr516
cm. When the reflector is inserted, an interference patte
appears. However, it should be noted that this interference
weak, and requires sufficient averaging to be observed. T
data shown in Fig. 5 consist of 250 averages.~The power
spectrum whenQ,Qc , i.e., in the stationary regime where
there are no surface waves, is a factor;1023 smaller than
the spectra in Fig. 5.!

This interference phenomenon was, in fact, first observ
using the 4-mm-thick glass plate and no reflector. Althoug
the edge of the plate was rounded, the small radius of cur
ture ~comparable to a capillary length! caused some partial
reflection of the surface waves, and hence interference w
unavoidable. For this reason we switched to the thicker gla
plate described in Sec. IIA with its correspondingly large
radius of curvature at the edge. This plate produced no
flections from its edge, thus allowing a clean measurement
the background spectrum~i.e., with no reflector! shown in
Fig. 5.

FIG. 4. Radius of the jump position vs flow rate for two differ
ent nozzle diameters.

FIG. 5. Power spectrum with~solid line! and without~dashed
line! a reflector.
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55 7051GEOMETRIC ORBITS OF SURFACE WAVES FROM A . . .
In order to fully understand such spectra, we must fir
consider the nature of capillary-gravity waves in greater d
tail. To begin with, in Fig. 7 we show the different dispersio
regimes for undamped capillary-gravity waves in water. Als
shown are the dispersion relations for two different heigh
For frequenciesf,5 Hz, we see that the waves are esse
tially shallow-water gravity waves. Forf.30 Hz they are
essentially deep-water capillary waves. The height, therefo
is an important factor, although the dispersion relation is n
very sensitive to variations in it except at rather low freque
cies. ForQ520 cm3/s, the mean height~without the reflec-
tor! decreased fromh.1.5 mm atx56 cm toh.1.2 mm at
x512 cm, so it is actually not quite constant. When th
reflector was inserted, the overall height increased
h.1.6 mm atx56 cm andh.1.4 mm atx512 cm. The
rms variation from surface fluctuations was;0.1 mm.

It will also be observed in Fig. 5 that the amplitude of th
interference oscillations decreases with increasing frequen
This is caused both by damping~viscosity! and also by the
finite size of the light beam. The smallest observable wav
length islmin;2ds;2 mm, which corresponds to a maxi
mum observable frequencyfmax;250 Hz ~see Fig. 7!. The
presence of damping requires that we use a dispersion r
tion which includes the dissipative effects of viscosity. Th

FIG. 6. The geometry on the surface of the plate. The thin lin
emanating from the unstable jump show the two interfering orbi
Also shown is a second reflector, inserted later, parallel to and 8
away from them~see Sec. VI!. The dashed lines show a new pair o
interfering orbits.
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is computed in Appendix B. It is found that typical dampin
lengths are;5–10 cm~see Fig. 16!, which are comparable
to the size of the system and so cannot be ignored.

We must also consider the frequency~doppler! shift of the
surface waves caused by the flow. For a wave with rad
wave vectork0, the observed frequency will be approx
mately given byv.v01 ūk0 wherev0 is the frequency in
the absence of a flow. Thus we would like the phase velo
of the surface waves,vp5v0 /k0, to be much smaller than
the flow velocity. For the data shown in Fig. 5, the me
flow velocity at the measuring point isū5Q/2pxh.1.8
cm/s, which exceeds 10% ofvp only for f,25 Hz.

V. POWER SPECTRA

In Appendix C we compute the power spectrum for
driven dissipative linear equation with a spatially uncor
lated source term. We propose that the hydraulic jump can
modeled by such a source. The result is

S~x,v!5Sf~v!E uG̃~x,x8,v!u2r~x8!ddx8, ~1!

whereG̃(x,x8,v) is the Green’s function for the linear equa
tion, Sf(v) is the spectrum of the source, andr(x) is its
spatial density. We then argue thatG̃(x,x8,v) could be con-
structed from the free-wave Green’s functiong0(kux2x8u)
wherek(v)5k01 ib is the dispersion relation for dampe
capillary-gravity waves derived in Appendix B2.

For simplicity, we will now consider the source~the
jump! to be a point source atx0. Thenr(x)5d(x2x0), and
Eq. ~1! becomes simply

s
.
m

FIG. 7. Dispersion relationf (l) of undamped capillary-gravity
waves in water. The vertical dotted lines represent the approxim
boundaries for pure capillary waves~small wavelengths! and grav-
ity waves~long wavelengths!. The region in the middle has mixe
capillary-gravity waves. The dashed line represents the relativ
sharp boundary between the shallow- and deep-water limits.
solid lines show the dispersion relation for water with two differe
depths.
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7052 55S. H. HANSENet al.
S~x,v!5Sf~v!uG̃~x,x0 ,v!u2. ~2!

If we consider the geometry in Fig. 6, it is evident that w
can obtain an analytic solution by placing an image sourc
xi52xr2xj . Then the Green’s function is just the sum
the Green’s functions for both source and image, and so
power spectrum along thex axis can be written as

S~x,v!5S0~x,v!U11beiu
g0@k~xi2x!#

g0@k~x2xj !#
U2, ~3!

where we have inserted a factorbeiu (0<b<1) to account
for the boundary condition at the reflector, and

S0~x,v!5 1
16Sf~v!ug0@k~x2xj !#u2 ~4!

is the background spectrum measured without a reflec
i.e., b50. ~If all the energy is reflected, thenb51.!

The phaseu will depend on the precise details of th
boundary condition at the reflector. This is not simple fo
liquid. There will be a boundary layer of widthd;A2n/v
which will be unimportant ifdk0!1. This is equivalent to
examining the validity of the weak-damping approximati
at high frequencies~see Appendix B!. It is easily checked
that dk0&0.02 over our measured frequency range, so
wave motion should be essentially an antinode at the refl
tor. At the contact line, however, the situation is more co
plicated, since the liquid can wet the surface of the reflec
Even then, the contact line can become pinned due to sur
roughness. Finally, surface tension will produce a minis
at the reflector with dimensions of the order of a capilla
length. We therefore make no attempt to predict the ph
since, for the above reasons, it may not even be reproduc

In Appendix C we discuss as a specific example the t
graph equation for which the two-dimensional result
g0(kux2x8u)5( i /4)H0

(1)(kux2x8u). At large distances, o
equivalently, short wavelengths, the asymptotic form~which
for our system parameters would be highly accurate ab
;1 Hz! is then

g0~kux2x8u!.
i

4S 2

pkux2x8u D
1/2

ei ~kux2x8u2p/4!. ~5!

If we assume that the true Green’s function for capilla
gravity waves behaves similarly, then the normalized sp
trum SN(x,v)5S(x,v)/S0(x,v) ~which is therefore inde-
pendent of the source power spectrum! can be written as

SN~x,v!5u11mbeiue2bLeik0Lu2, ~6!

wherem5A(x2xj )/(xi2x) and L52(xr2x). We can re-
write this in the formSN(x,v)5A(v)1B(v)cos(k0L1u),
where A(v)511m2b2e22bL and B(v)52mbe2bL are
slowly varying functions ofv, so that the interference term
is explicit. ~We also implicitly assume thatu varies suffi-
ciently slowly with frequency as to be considered consta!
Note that for this particular case the argument of the in
ference term does not depend on the source~jump! position.
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VI. SHORT-WAVELENGTH LIMIT

The calculation in Sec. V can be generalized to mo
complicated geometries in a straightforward way if we e
ploy semiclassical approximations@13#. These apply in the
short-wavelength limit, and express the Green’s function a
sum over geometrical orbitsa as

G̃sc~x,x8,v!'(
a

Aa~x,x8,v!eiSa~x,x8,v!. ~7!

Herea labels an orbit going fromx8 to x in the geometrical
limit of the wave equation~analogous to the geometrica
limit of optics, for example!. In general, such an orbit is
obtained by using the local dispersion relationv(x,k) to
generate classical trajectories, or rays, according to Ha
ton’s equations (ẋ,k̇)5(]v/]k,2]v/]x). Since in our case
the dispersion relation is only weakly dependent on positi
the orbits are effectively lines, but reflections can occur
boundaries to produce nontrivial interference effects. A co
plete analysis of this approximation as it applies to calcu
tions of the present type is given in Ref.@14#. More general
background, concentrating on the case where the wave
tem corresponds to the Schro¨dinger equation in quantum me
chanics, is given in Ref.@13#. Each orbit donates to the
Green’s function a contribution with the accumulated pha
Sa(x,x8,v)5*x8

x k•dx. The amplitudeAa(x,x8,v) is ob-
tained from the geometry of the orbit as described in Re
@13,14#. The advantage of this formula is that it applies ev
when the geometry of the system does not allow the sim
decomposition of Sec. V.

If we consider for a moment a single-point source, th
there are only one or two orbits, depending on whether or
the reflector is in the flow. Then the semiclassical Gree
function Eq.~7!, becomes simply

G̃sc~x,xj ,v!'A1e
ik0~x2xj !1A2e

ik0~x2xj !ei2k0~xr2x!, ~8!

where the imaginary part of the wave vector has been
sorbed in the amplitudes. The normalized form of the pow
spectrum, Eq.~2!, can then be written as

SN
sc~x,v!5u11b8eiueik0Lu2, ~9!

where S0
sc(x,v)5Sf(v)uA1u2, b8eiu5A2 /A1, and L can

now be interpreted as the difference in the orbit lengths.
note that Eq.~9! has the same form as the asymptotic res
for the pedagogical analytic example, Eq.~6!. However, it
should be emphasized that a simple analytic expression
as Eq.~3! can only be found for our special geometry~point
source, straight reflector!, whereas the semiclassical metho
is more generally applicable.

A complication occurs in the actual system, however,
that the source is not a point but is spatially extended, p
sumably over the annular region occupied by the jump its
Therefore it is necessary to integrate over the source pos
as in Eq.~1!. Once again, this is described in detail in Re
@14#. Here we simply cite the main effect, which is that th
dominant contribution, which comes from source points
which the phase is stationary with respect to variation of
source position, corresponds in the case of a single refle
to an orbit emerging radially from the jump. The power spe
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55 7053GEOMETRIC ORBITS OF SURFACE WAVES FROM A . . .
trum then still has the form Eq.~9!. We will return to more
complicated geometries below. First let us examine the c
respondence between the prediction Eq.~9! and the actual
data.

In Figs. 8~a!–8~c!, we show the normalized spectra fo
x56, 12, and 14 cm, respectively.~They do not approach
unity at high frequency because, as discussed previous
Sec. IV, there is a small increase in the water height w

FIG. 8. Normalized power spectra for~a! x56 cm, ~b! x512
cm, and ~c! x514 cm. The dashed line in~c! shows the self-
consistency of the analysis~see text!.
r-

in
n

the reflector is inserted in the flow, which causes a sm
additional amount of absorption of the light beam.! It is clear
now that the peaks in the interference pattern are not ev
spaced due to the nonlinear dispersion relation for capilla
gravity waves.

In order to extract the orbit length differenceL, we must
express the normalized spectrum as a function ofk0. Thus
we must make the change of variablef→k0 using the dis-
persion relation calculated in Appendix B. We can then co
pute the Fourier transform

L~x,j!5E SN~x,k0!e
2 ik0jdk0 . ~10!

The modulus ofL(x,j) for the spectra in Figs. 8~a!–8~c! is
shown in Figs. 9~a!–9~c!. In each case there is a strong pe
whose position is just the orbit length differenceL. The
phase at the peak is justu. The values forL are consistent
with the actual measured values, with some small discrep
cies that are probably a consequence of the messy boun
conditions at the reflector which also determine the ph
~see Sec. V!. The peak widths are a consequence of the fin
frequency range over which the power spectrum was m
sured.

Inserting the values found in Fig. 9 into Eq.~6!, or
equivalently Eq.~9! ~and takingb51 and correcting for the
increased light absorption with the reflector in place!, we can
check our analysis for self-consistency. We show an exam
of this as the dashed line in Fig. 8~c!. ~Similar results are
found for the other spectra, but we do not show them
reasons of clarity.! There is more attenuation at high freque
cies in the measured data than in the theory, but this is p
ably a consequence of the finite beam size, as discusse
Sec. IV.

If we add a second reflector as shown in Fig. 6, additio
orbits appear, the topology of which is indicated by t
dashed lines in the figure. The result of integrating over
source position is less simple for these orbits, because t
is no source position for which the phase is stationary.
contribution will still arise, however, dominated by the limi
of the integration region, but the equivalent expression
the contribution to the power spectrum is considerably m
complicated and we will not go into it in detail. Figure 1
showsuL(x,j)u for this new configuration. A new peak doe
indeed appear atj512.6 cm, which is consistent with th
length of orbits of the type shown in the figure. We expe
more complicated orbits of this type to be a general feat
of systems with closed boundary conditions. For a co
pletely closed system the number of orbits can be dram
cally larger, although the effects of longer orbits will be su
pressed by the presence of dissipation.

VII. SUMMARY

We have studied the surface height fluctuations created
an unstable circular hydraulic jump. When the fluctuatio
are small, they are just ordinary capillary-gravity waves. I
reflector is placed in the flow, the measured power spect
shows an interference pattern. If we treat the jump as a s
tially uncorrelated broadband source, then the interfere
has a simple interpretation using semiclassical approxi
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7054 55S. H. HANSENet al.
tions. A similar phenomenon should also appear in ot
systems with spatially uncorrelated broadband source s
tra. For example, a microwave cavity may show such in
ference using its own blackbody radiation as a source. M
generally, this experiment has demonstrated a mechan
whereby, even in situations where the excitations of a w
system are fundamentally stochastic in origin, it is possi
to extract coherent interference effects. Such coherent eff
might be used as a probe to determine the properties o

FIG. 9. Modulus ofL(x,j) for ~a! x56 cm, ~b! x512 cm, and
~c! x514 cm.
r
c-
r-
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e
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cts
he

wave medium, for example. This may have possible re
evance to fields such as seismology and helioseismology
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APPENDIX A: OPTICAL CONSIDERATIONS

One can think of the free surface as having two degrees
freedom at the point where the light beam passes through
a vertical translation, and a tilt. Although we are only inte
ested in variations in the transmitted light intensity arisin
from the former~attenuation!, we must also consider the ef
fects of the latter~refraction!.

1. Attenuation

A measurement of the transmitted intensityI through
deionized water of different heightsh is shown in Fig. 11.
The data follow the expected law

I ~h!5I 0e
2h/l , ~A1!

yielding an attenuation lengthl 50.67 mm for a light wave-
length of 1550 nm.

There are several considerations in choosing an appro
ate wavelength. If the height fluctuates, then from Eq.~A1!
we have

dI /I52~dh/l !1 1
2 ~dh/l !21•••. ~A2!

A linear response requires that the dynamic ran
udh/l u!1, but, of course, it should be as large as possib
by choosing the smallestl for which this condition is satis-
fied. Physically, we expect thatudhu!h, but, then again, we

FIG. 10. Modulus ofL(x,j) for x512 cm with a second reflec-
tor in the flow. A new peak is now visible atj512.6 cm.
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do not want to lose too much intensity from attenuation
h should not exceed several attenuation lengths. Taken
gether, these conditions lead to the conclusion that it is d
sirable to havel ;h. The attenuation length varies widely~1
mm to 10 m! in the infrared, so it is not difficult to find a
convenient source wavelength. In our experiment the wa
height was typically 1–2 mm~depending on the flow rate!,
hence our choice of the wavelength above. The signal-
noise ratio was better than 1000:1, so the smallest meas
able height change is then udhumin&1023l , or
udhumin&1 mm.

2. Refraction

As the light beam passes through the water-air interface
will refract if the free surface is tilted due to surface wave
Figure 12 shows the refraction of a light ray as it pass
through an interface tilted at an anglei from the horizontal.
We are interested not in the angle of refractionr , but in the
deflection from the incident beam directionx5r2 i . Using

FIG. 11. Transmitted light intensity for different water heights
The dashed line is a fit to Eq.~A1!.

FIG. 12. Geometry of the optical measurement~see text!.
o
o-
e-

er

o-
ur-

it
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Snell’s law sinr5n0sini, wheren05nwater/nair is the index of
refraction at the interface, we find

tani5
sinx

n02cosx
. ~A3!

Figure 13 showsx( i ) for n051.316, the index of refraction
at 1500 nm.~For visible wavelengths,n051.33; n0 is only
weakly dependent on wavelength in this part of the electr
magnetic spectrum.! The critical anglei c for total internal
reflection occurs when r590° and is therefore
i c5sin21(1/n0).49°. Then,x( i c)590°2 i c.41°, which is
the point where the curve in Fig. 13 terminates.

Since we must capture the outgoing ray, it is clear fro
Fig. 13 that we must keep the tilt angle as small as possib
certainly below 40°, wherex begins to increase rapidly. It
was therefore necessary to put a lens in front of the pho
diode. The lens had a diameter of 1.5 cm, and was loca
1.8 cm from the surface of the glass plate. Assuming th
only the central 1 cm of the lens is active, and that there is
least 1 mm of water on the plate, the maximum detecta
deflection angle isxmax5tan21(0.5/1.7).16°. This corre-
sponds to a maximum allowable tilt angle ofimax.38°, be-
yond which a refracted beam will miss the active part of th
lens.

This limitation puts a constraint on the maximum ampl
tude of a surface wave. Suppose there is a surface wave
the formw(x,t)5Asin(kx2vt). Its peak tilt anglei p is then

tani p5maxu]w/]xu5Ak52pA/l. ~A4!

The beam diameterds limits the smallest measurable surfac
wavelength, i.e.,lmin;2ds;2 mm. For this wavelength
~which represents the worst case!, we require thati p, imax,
or therefore thatA,(lmin/2p)tanimax'0.3 mm.

The measured signal is, of course, a superposition
many surface waves. However, using Eq.~A1! to calibrate
the photodiode output, we find that the rms height variati
is ^@dh(x,t)#2&1/2;0.1 mm. Taking this as the amplitude o
a single wave, and using Eq.~A4!, this corresponds to

FIG. 13. The deflection of the incident beam as a function of t
surface tilt angle.
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7056 55S. H. HANSENet al.
i p.17° andx( i p).6°, both well within the limits deter-
mined earlier. In fact, by simply monitoring the photodio
output, it was observed that the beam never left the ac
area of the lens, except at the highest flow rates which p
duced extremely large~and certainly nonlinear! surface fluc-
tuations. Furthermore, we see that the linearity condition
cussed in the first part of this appendix, which required t
^@dh(x,t)#2&1/2!l , is then also marginally satisfied.

Finally, as a surface wave passes, the initial beam in
sity I 0 in Eq. ~A1! will also vary in time since the reflectivity
of the interface will also depend on the tilt angle. Thus E
~A1! should be modified to read

I ~h,i !5I 0T̃~ i !e2h/l , ~A5!

where T̃( i ) is the normalized transmission coefficient su
that T̃(0)51. For an unpolarized beam~the fiber optic cable
does not preserve the polarized light emitted from the la
diode!, and for equal permeabilities in both media, this w
have the formT̃( i )5T( i )/T(0), where@15#

T~ i !512
1

2Fsin
2~ i2r !

sin2~ i1r !
1
tan2~ i2r !

tan2~ i1r !G , ~A6!

andT(0)54n0 /(n011)2 is the transmitted intensity at nor
mal incidence.~We ignore multiple reflections from the othe
surfaces in the experiment.! As shown in Fig. 14,T̃( i ) is
essentially unity up to;30°. In fact, for smalli , it is found
that T̃( i ).12ai4, where a5(n021)2(2n0

214n021)/
8.0.032 forn051.316. Thus for a single mode~and small
tilt angles!, i 4.(]w/]x)45A4k4sin4(kx2vt), so the effect of
this term would be to produce negligible harmonic contam
nation at 2v and 4v.

APPENDIX B: DISPERSION RELATIONS

1. v„k… for damped capillary-gravity waves

We would like to calculate the dispersion relation f
small-amplitude capillary-gravity waves on the surface of
incompressible viscous liquid of finite depthh @16#. For ease

FIG. 14. The normalized transmission coefficient as a funct
of the surface tilt angle.
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of calculation, we will work in Cartesian coordinates, a
consider a plane wave propagating in thex̂ direction in a
gravitational fieldg52gẑ. The unperturbed surface is take
to be atz50. The linearized Navier-Stokes equations a
then

]vx
]t

5nS ]2vx
]x2

1
]2vx
]z2 D2

1

r

]P

]x
, ~B1a!

]vz
]t

5nS ]2vz
]x2

1
]2vz
]z2 D2

1

r

]P

]z
2g, ~B1b!

with the continuity condition

]vx
]x

1
]vz
]z

50. ~B1c!

If we assume a solution of the forms

vx5 ṽ xe
bzei ~kx2vt !, ~B2a!

vz5 ṽ ze
bzei ~kx2vt !, ~B2b!

P/r5 p̃ebzei ~kx2vt !2gz, ~B2c!

then substitution into Eqs.~B1! requires that

S 2 iv1n~k22b2! 0 ik

0 2 iv1n~k22b2! b

ik b 0,
D S ṽ x

ṽ z

p̃
D 50,

~B3!

which in turn only has a solution if the determinant of th
matrix vanishes. Thus we find the four solution
b56k,6Ak22 iv/n . Solving for the eigenvectors, we ca
write

vx5@Aekz1Be2kz1Cemz1De2mz#ei ~kx2vt !, ~B4a!

vz5~2 i !@Aekz2Be2kz1C~k/m!emz

2D~k/m!e2mz#ei ~kx2vt !, ~B4b!

P/r5~v/k!@Aekz1Be2kz#ei ~kx2vt !2gz, ~B4c!

wherem5Ak22 iv/n and A, B, C, andD will be deter-
mined by the boundary conditions.

The first two boundary conditions are found from the r
quirement that the velocity field vanish at the bottom~fixed!
surface, i.e.,vx(x,2h)5vz(x,2h)50. This immediately
gives us the two relations

Ae2kh1Bekh1Ce2mh1Demh50, ~B5a!

Ae2kh2Bekh1C~k/m!e2mh2D~k/m!emh50.
~B5b!

The remaining two boundary conditions are found by bala
ing the forces at the free surface. The perturbed free sur

n
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is defined by its displacement from equilibriumw(x,t)
which is related to the velocity field by

]w

]t
5vz~x,w!2vx~x,w!

]w

]x
.vz~x,w!, ~B6!

where the last approximation can be made if]w/]x is a
small quantity. This will be true ifw!l where l is the
wavelength of a surface wave. In this case,w(x,t) will have
the same dispersion relation as the velocity field. If the s
face is curved, the surface tension will produce a capill
force which must then balance the difference in the visc
stress forces. The viscous stress tensor in Cartesian co
natesxi is

s ik52Pd ik1hS ]v i
]xk

1
]vk
]xi

D . ~B7!

The condition at the surface is then

nk~s2,ik2s1,ik!z5w5
g

R
ni , ~B8!

where sa,ik is the viscous stress tensor for the liqu
(a51) and the air above it (a52), g is the surface tension
R is the radius of curvature, andni is the unit vector norma
to the surface. Repetition of indices implies summati
Again, for small-amplitude waves,unx /nzu5u]w/]xu!1, so
Eq. ~B8! simplifies to

~s2,xz2s1,xz!z5w.0, ~B9a!

~s2,zz2s1,zz!z5w.2g
]2w

]x2
. ~B9b!

Sinceh2!h1, the coupling between the two fluids will b
weak, and we can consider the air to be stationary. T
s2,ikuz5w52P0d ik , whereP0 is the ~constant! air pressure
r-
y
s
di-

.

n

at the surface. We then expand Eqs.~B9! for small w, and
keep only the lowest order (w0) terms. Then Eq.~B9a! be-
comes simply

s1,xzuz505h1S ]vx
]z

1
]vz
]x D

z50

50, ~B10!

which leads directly to the third boundary condition

A2B1CS k21m2

2km D2DS k21m2

2km D50. ~B11!

The second surface boundary condition Eq.~B9b! is now

2P01S P22h1

]vz
]z D

z5w

52g
]2w

]x2
. ~B12!

Taking the time derivative of both sides, and using Eq.~B6!,
we obtain

S ]P

]t
22h1

]2vz
]z]t D

z5w

52g
]2vz
]x2

. ~B13!

Finally, using Eqs.~B4!, and settingw50 in the end, we
arrive at the fourth boundary condition

AS 12
v`
2

v2 12i e D 1BS 11
v`
2

v2 12i e D 1CS 2
kv`

2

mv2 12i e D
1DS kv`

2

mv2 12i e D 50, ~B14!

wheree5nk2/v, n5h1 /r, andv`
25gk1(g/r)k3, which is

the familiar dispersion relation for deep-water~i.e., infinite
depth! capillary-gravity waves.

The four boundary conditions Eqs.~B5!, ~B11!, and~B14!
will only have a solution if
U e2kh ekh e2mh emh

e2kh 2ekh
k

m
e2mh 2

k

m
emh

1 21
k21m2

2km
2
k21m2

2km

12
v`
2

v2 12i e 11
v`
2

v2 12i e 2
kv`

2

mv2 12i e
kv`

2

mv2 12i e

U50. ~B15!



w

e

n,

f

he
d
-
at
xt

e
p
i

f

y.

q.

an

ns,
der-

ay
t

cy

7058 55S. H. HANSENet al.
The dispersion relation we seek, namely,v(k), is implicit in
this determinant. After some suitable combinations of ro
and columns, it can be conveniently expressed as

a~116a21a4!tanhkh tanh~kh/a!1b~12a2!2

3@ tanhkh2a tanh~kh/a!#2~112a215a4!

14a2~11a2!sechkh sech~kh/a!50, ~B16!

where a5k/m, b5v`
2 /v2, and where we have used th

identity i e5a2/(12a2) @17#.
We will now make the weak-damping approximatio

namely, thate!1, or equivalently,uau!1. First, we drop
exponentially small terms in Eq.~B16!, and write it as a
power series ina:

a0@b tanhkh21#1a1@ tanhkh2b#22a2@b tanhkh11#

12a3@3 tanhkh1b#1a4@b tanhkh25#

1a5@ tanhkh2b#50. ~B17!

Then expressinga in terms ofe and expanding in powers o
e, we obtain

v25v`
2 tanhkhF12~ i e!1/2

2

sinh2kh
2~ i e!S 41

1

cosh2khD
1O$~ i e!3/2%G . ~B18!

We are not finished, however, sincee depends onv. Solving
recursively, we arrive at the final result, toO(eh),

v5vhF12~ i eh!
1/2

1

sinh2kh
2~ i eh!S 21

1

2 cosh2kh

1
1

sinh22khD G , ~B19!

where eh5nk2/vh , andvh
25v`

2 tanhkh which is the well-
known dispersion relation for capillary-gravity waves in t
absence of viscosity. Theeh

1/2 term confirms the result argue
for by Lighthill @18# on physical grounds. It should be ob
served, however, that this term vanishes in the deep-w
(h→`) limit, which is why it is necessary to retain the ne
order term also which does not vanish.

It should also be pointed out that Eq.~B19! is really an
expansion in the variable (i eh)

1/2/sinh2kh, that is, the height
also plays an important role in the dissipation. For extrem
shallow water, the expansion will break down, and the dam
ing can no longer be considered weak. To consider this lim
we must return to Eq.~B16! and expand it first in powers o
kh. To lowest order, it is found thatv52 iv`

2kh3/3n, i.e.,
the waves are overdamped.~In particular, it should be noted
that for gravity wavesv52 igk2h3/3n, i.e., they are purely
diffusive with diffusion constantD05gh3/3n.!

2. Damping coefficients

Above, we found a dispersion relation of the form

v5vh~k!@12la1~k!2l2a2~k!# ~B20!
s

er

ly
-
t,

wherel is a small parameter which later will be set to unit
We now expandv andk as follows:

v5v01la11l2a21•••,

k5k01lb11l2b21•••,

such thatv0 and k0 are real. Substituting these into E
~B20!, we find the following relations for each order ofl up
to O(l2):

l0: v05vh~k0!, ~B21a!

l1: a152v0a1~k0!1b1

dv0

dk0
, ~B21b!

l2: a252v0a2~k0!2b1

d

dk0
@v0a1~k0!#1b2

dv0

dk0

1
b1
2

2

d2v0

dk0
2 . ~B21c!

We will take k0 to be the independent variable, so we c
chooseb1 andb2 to be purely imaginary, i.e.,b1,25 ib1,2

I .
This leaves us with seven variables and only five equatio
so we must add two conditions based on physical consi
ations.

a. Temporal damping

If the system is driven spatially and then allowed to dec
in time, then k must be real, which requires tha
b1
I 5b2

I 50. In this case, Eqs.~B21b! and ~B21c! reduce to

a152v0a1 , ~B22a!

a252v0a2 , ~B22b!

the real and imaginary parts of which yield the frequen
shift Da and the temporal damping coefficienta, respec-
tively, when we setl51:

Da5Re~la11l2a2!,52v0Re~a11a2!, ~B23a!

a5Im~la11l2a2!52v0Im~a11a2!. ~B23b!

Specifically, from Eq.~B19! we have that

a1~k0!5~ i e0!
1/2/sinh2k0h, ~B24a!

a2~k0!5~ i e0!~211/2cosh2k0h11/sinh22k0h!,
~B24b!

wheree05nk0
2/v0, and so we easily find that

Da52v0S e0
2 D 1/2 1

sinh2k0h
, ~B25a!

a52v0F S e0
2 D 1/2 1

sinh2k0h
1S e0

2 D S 41
1

cosh2k0h

1
2

sinh22k0h
D G . ~B25b!
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Note that in the deep-water (h→`) limit, the e0
1/2 term van-

ishes, as mentioned earlier, and thee0 term yields
a→22v0e0522nk0

2, the well-known result for the weak-
damping limit @16#.

We show in Fig. 15 theQ factor, defined asQ5v0/2a,
as a function of frequencyf5Rev/2p, for water with depth
h51.5 mm. Since the weak-damping approximation is accu
rate to better than;10% forQ.5, this figure tells us that it
is valid abovef;1 Hz and up tof;100 kHz ~not shown!.
As discussed at the end of Appendix B1, theQ factor be-
comes small at low frequency due to the excess dampi
encountered in the extreme shallow-water limit.

b. Spatial damping

If the system is driven temporally, and only decays spa
tially, thenv is real which requires thata1 anda2 also be
real. In this case, Eqs.~B21b! and ~B21c! yield the four
equations

a152v0Rea1 , ~B26a!

052v0Ima11b1
I dv0

dk0
, ~B26b!

a252v0Rea21b1
I Im

d

dk0
~v0a1!2

~b1
I !2

2

d2v0

dk0
2 ,

~B26c!

052v0Ima22b1
IRe

d

dk0
~v0a1!1b2

I dv0

dk0
. ~B26d!

The solution gives the frequency shiftDb and the spatial
damping coefficientb:

FIG. 15.Q as a function of frequency for water.
-

g

-

Db5la11l2a2

52v0FRe~a11a2!2S v0

dv0

dk0
D Im a1Im

da1
dk0

1H v0

2

d2v0

dk0
2 /S dv0

dk0
D 221J ~ Im a1!

2G , ~B27a!

b5lb1
I 1l2b2

I

5S v0

dv0

dk0
D F Im~a11a2!1Im a1Rea1

1S v0

dv0

dk0
D Im a1Re

da1
dk0G . ~B27b!

Again, using Eqs.~B24!, we find that

Db52v0F S e0
2 D 1/2 1

sinh2k0h
1S e0

2 D f 1~k0!

sinh22k0h
G ,
~B28a!

b5S v0

dv0

dk0
D F S e0

2 D 1/2 1

sinh2k0h
1S e0

2 D S 41
1

cosh2k0h

1
f 2~k0!

sinh22k0h
D G , ~B28b!

where

f 1~k0!52
1

2
2S v0

k0
Y dv0

dk0
D S 12

2k0h

tanh2k0h
D

1
v0

2

d2v0

dk0
2 Y S dv0

dk0
D 2, ~B28c!

f 2~k0!5
5

2
1S v0

k0
Y dv0

dk0
D S 12

2k0h

tanh2k0h
D . ~B28d!

In the deep-water limit,b→2nk0
2/(dv0 /dk0). In Fig. 16 we

show the spatial damping coefficientb as a function of fre-
quency for water with depthh51.5 mm.

APPENDIX C:
GREEN’s FUNCTIONS AND POWER SPECTRA

We would like to find the power spectrum for a gene
driven dissipative linear equation

Lw~x,t !5 f ~x,t ! ~C1!

whereL is a linear operator andf (x,t) is a source term. We
proceed by defining the Green’s function in the usual w
i.e., LG(x,x8,t,t8)5d(x2x8)d(t2t8), in terms of which
the solution to Eq.~C1! is
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w~x,t !5E G~x,x8,t,t8! f ~x8,t8!ddx8dt8. ~C2!

If we consider the partial transform w̃(x,v)
5*w(x,t)eivtdt, then we can write Eq.~C2! as

w̃~x,v!5E G̃~x,x8,v! f̃ ~x8,v!ddx8. ~C3!

The power spectrum is obtained by considering the en
semble average

^w̃~x,v!w̃* ~x8,v8!&5E C~x,x8,t,t8!eivte2 iv8t8dt dt8,

~C4!

where C(x,x8,t,t8)5^w(x,t)w(x8,t8)& is the correlation
function. If the correlation function is time translationally
invariant, i.e.,C(x,x8,t,t8)5C(x,x8,t2t8), then

^w̃~x,v!w̃* ~x8,v8!&52pS~x,x8,v!d~v2v8!, ~C5!

where S(x,x8,v)5*C(x,x8,t)eivtdt is the power spec-
trum.

If we now substitute Eq.~C3! into Eq. ~C4!, we find that

^w̃~x1 ,v!w̃* ~x2 ,v8!&5E G̃~x1 ,x8,v!G̃* ~x2 ,x9,v8!

3^ f̃ ~x8,v! f̃ * ~x9,v8!&ddx8ddx9,

~C6!

which using Eq.~C5! can be written as

S~x1 ,x2 ,v!5E G̃~x1 ,x8,v!G̃* ~x2 ,x9,v!Sf~x8,x9,v!

3ddx8ddx9, ~C7!

FIG. 16. The spatial damping coefficient as a function of fre
quency for water.
-

whereSf(x,x8,v) is the power spectrum of the source ter
f (x,t) defined in the same manner as Eq.~C5! @19#.
Now let us suppose that the source term is spatially

correlated, and that its spectrum is independent of posit
Then we can writeSf(x,x8,v)5Sf(v)r(x)d(x2x8), where
r(x) is the spatial density of the source@20#. Equation~C7!
then becomes

S~x1 ,x2 ,v!5Sf~v!E G̃~x1 ,x8,v!G̃* ~x2 ,x8,v!r~x8!ddx8.

~C8!

Generally, the power spectrum is measured at a single p
in which casex15x25x, and so

S~x,v!5Sf~v!E uG̃~x,x8,v!u2r~x8!ddx8. ~C9!

We will consider now only free-wave solutions whereL
has plane-wave eigenfunctions, i.e.,Lei (q•x2vt)

5D(q,v)ei (q•x2vt), where the eigenvalueD(q,v) is the
dispersion function, andD(q,v)50 gives the dispersion re
lation. This case includes the linearized Navier-Stokes eq
tions described in Appendix B, where the fieldw(x,t) repre-
sented the displacement of the free surface from equilibriu
The Green’s function is then given by

G̃0~x,x8,v!5
1

~2p!d
E eiq•~x2x8!

D~q,v!
ddq. ~C10!

Integral Eq.~C10! would appear to be difficult to comput
for the dispersion relation found in Appendix B, but we sh
now argue what form it is likely to take. Let us consider, f
pedagogical reasons, the telegraph equation

1

c2
]2c

]t2
1g

]c

]t
2¹2c5 f ~x,t !. ~C11!

This is just the usual driven wave equation to which has b
added a dissipative term with positive coefficientg. The dis-
persion function~which is now isotropic! is easily found to
be D(q,v)5q22k2 where k25v2/c21 igv. Thus,
D21(q,v) will have poles at6k, which will be in opposite
quadrants of the complex plane. The integral Eq.~C10! can
then be evaluated by contour integration such that only
pole at1k is enclosed, corresponding to a single source
spatially decaying outgoing waves@21#. It is found that

G̃0~x,x8,v!5~ i /2k!eikux2x8u ~d51!, ~C12a!

G̃0~x,x8,v!5~ i /4!H0
~1!~kux2x8u! ~d52!, ~C12b!

whereH0
(1)(z) is a Hankel function of the first kind. We

postulate that the dispersion relation found in Appendix
will yield a similar pole structure with the consequence th
the general form of Eqs.~C12! will remain unchanged, i.e.
G̃0(x,x8,v)5g0(kux2x8u), where the functiong0(z) will
depend on the specific form of the dispersion functi
D(q,v).
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